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Consider a linear transport problem, and let the mean free path and 
the absorption cross section be of size E. It is well known that one 
obtains a diffusion problem as E tends to zero. We discretize the trans- 
port problem on a fixed mesh, independent of E, consider again the limit 
e-+0, and ask whether one obtains an accurate discretization of the 
continuous diffusion problem. The answer is known to be affirmative 
for the linear discontinuous Galerkin finite element discretization in one 
space dimension. In this paper, we ask whether the same result holds 
in two space dimensions. We consider a linear discontinuous dis- 
cretization based on rectangular meshes. Our main result is that the 
asymptotic limit of this discrete problem is nof a discretization of the 
asymptotic limit of the continuous problem and thus that the discretiza- 
tion will be inaccurate in the asymptotic regime under consideration. 
We also propose a modified scheme which has the correct asymptotic 
behavior for spatially periodic problems, although not always for 
problems with boundaries. We present numerical results confirming our 
formal asymptotic analysis. 0 1992 Academfc Press. Inc. 

1. INTRODUCTION 

Linear transport equations describe processes in which 
particles (typically neutrons, electrons, or photons) 
undergo linear interactions with a dense host of background 
nuclei, but do not interact with each other. Such equations 
find application in nuclear reactor analysis, the conduction 
of electrons in solids, and the propagation of photons in 
planetary and stellar atmospheres. We refer to [l] for the 
theory of linear transport, and to [2] for numerical tech- 
niques for such problems. 

Numerical transport solutions are often costly to obtain, 
and various approximations to transport theory, par- 

titularly diffusion theory, are frequently used instead. The 
relationship between transport and diffusion theory has, in 
the past two decades, become clarified by the use of an 
asymptotic analysis [3,4]. Namely, it has been shown that 
diffusion theory is an asymptotic limit of transport theory 
for problems in which the physical domain is optically thick, 
i.e., many mean free paths in diameter, and the probable 
number of particles exiting a collision is nearly equal to 
unity. In a recent series of papers [S, 61 the following ques- 
tion has been considered: If one applies the same asymptotic 
expansion to a discretized transport problem on a fixed 
mesh, will one obtain an accurate discretization of the diffu- 
sion problem? If the answer is yes, then one may be able to 
obtain accurate results using optically thick mesh cells. This 
is an important issue for thermal photon transport 
problems, in which the meshes used in practice tend to have 
optically thick cells. There are related, but more com- 
plicated, issues with electron transport. 

In [6], it was shown theoretically and numerically that 
the linear discontinuous (LD) finite element method in one 
space dimension is highly accurate in the asymptotic regime 
discussed above. The LD method has in fact found wide use 
in transport applications for one-dimensional problems 
[7], two-dimensional problems on rectangular meshes 
F-101, and two-dimensional problems on triangular 
meshes [ll]. The theoretical and experimental success of 
the LD method for asymptotically diffusive one-dimen- 
sional problems leads one to ask whether a similar result 
holds for two-dimensional problems. The purpose of the 
present paper is to show that for two-dimensional (x, y)- 
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geometry, on a rectangular spatial mesh, the LD scheme 
does not, except for essentially one-dimensional problems, 
asymptotically limit to a consistent discretization of the 
continuous diffusion problem. Our result leaves open the 
possibility that the LD scheme does have the correct limit 
when applied on a triangular mesh, or that a higher-order 
finite element method has the correct limit for a rectangular 
mesh. 

We specifically consider two-dimensional transport 
problems of the following form. Let Q = Q(x) be a given 
function of x = (x, y) E R* with period 1 in both coordinate 
directions: 

(The variables x are the spatial variables, and Q is a 
prescribed interior source of particles.) Let D denote the 
disk in the plane, centered at the origin, with radius one. We 
shall use the notation fi = (p, q) for points in D. (The 
variables 0 are the “angular” variables, denoting the 
direction of particle motion.) The unknown is a function 

e = ex, fi), XE[W*,~~ED, 

which defines the particle flux at (x, a). One can also think 
of + as a function defined on the cross product of R2 with 
the unit sphere S* c R3, by setting 

$(x, p, ?, qG=?, :=$(x3 P3 rl). 

The transport problem is 

i-l. wx, Q) + UT(X) $(x7 fi) 

= ~70) -C/l(X) 
47c I t,b(x, Cl’) dS1’ 

SZ 

+Q(x),xEI~‘,OED, (1) 

w + 1, Y, a2) 

= 4w, y + 1, Q) = w, y, fi) 

for all (x, y ) and f& (2) 

where rrr- and crA are given functions, the total and absorp- 
tion cross sections, with 0 < eA(x) < crT(x). er and crA are 
assumed to be periodic in both coordinate directions with 
period 1. 

We shall restrict ourselves to periodic problems. 
However, much of the analysis of the following sections 
applies to problems with boundaries. Issues related to 
boundary conditions will briefly be discussed in Section 7, 
and more fully in a future publication. 

We describe the physical situation modeled by Eq. (1). 
Consider particles with constant speed u moving among 

fixed nuclei. The flux of particles at the location x with 
direction vector R is $(x, a) = un(x, a), where n(x, fi) is 
the particle density. The particles may collide with nuclei, 
and in so doing are either absorbed or scattered. When a 
particle is scattered, it exits the collision with a random 
direction vector fi E S*, and the probability distribution for 
this direction vector is uniform. The number of collisions 
per unit time for a particle (the collision rate) is given by 
vcrT, and the number of collisions resulting in absorption 
per unit time (the absorption rate) is given by u(T~. Also, the 
mean distance between collisions (the mean free path) is 
a;‘, and the mean distance between absorptions is a,‘. It 
is assumed that rsT and eA do not depend on a. In addition, 
there is an interior particle source, with the periodic density 
function Q(x). In steady state, the flux satisfies Eqs. (1) 
and (2). 

To angularly discretize Eqs. (1) and (2), we make the 
discrete ordinates approximation [Z]. Thus, we replace the 
integral in Eq. (1) by a sum, using a numerical scheme for 
evaluating integrals of scalar functions over the unit sphere. 
We then obtain a system of equations of the form 

%I. W,(x) +07-(x) tinI 

= [aAx) - aAx) : w,ddx) + Q(x), (3) 
k=l 

m = 1, . . . . N, with the periodicity conditions 

$m(x + 1, Y) = tim(x, Y + 1) = I//,(x, Y). (4) 

Note that the weights wk are scaled in such a way that the 
denominator 47c in Eq. (1) is not present in Eq. (3). 

We shall not be concerned with the choice of the angular 
quadrature scheme, i.e., with the specific choice of the fik 
and the wk. We refer to [2, Section 4.21, for a discussion of 
standard angular quadrature schemes. However, we shall 
make the following requirements, which are in fact satisfied 
by standard quadrature sets used in two-dimensional trans- 
port codes. First, we require the quadrature scheme to 
exactly integrate polynomials in p and n of degree less than 
or equal to 2. Thus, 

kc, wk = l, (5) 

N N 

c wkpk= c wk?k=“, 
k=l k=l 

N N 

1 w&L:= 1 wk?:= 4, 

k=l &=I 

N 

c Wkpkqk = O. 
k=l 
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Second, we require both components of R, to be nonzero 
for all in: 

/An+07 VmfO, m = 1, . . . . N. (9) 

Third, we require the quadrature scheme to be symmetric, 
in the sense that 

and 

(I&l, Ivlml)=(lPnL II?,I)=Wm=Wn. (11) 

In a certain asymptotic limit, characterized by large oT 
and small (TV, Eq. (3) reduces to a diffusion equation. This 
so-called asymptotic diffusion limit is well known [3,4]. 
For the convenience of the reader, we shall review it in 
Section 2. 

We shall study the linear discontinuous Galerkin finite 
element method on rectangular meshes for Eqs. (3) and (4). 
For an introduction to such finite element methods, see, for 
example, [ 121. Thus the $,,, are approximated by functions 
that are piecewise linear, i.e., linear within each cell of 
the mesh, but possibly discontinuous at the cell edges. 
The linear discontinuous scheme is described in detail 
in Section 3. One might think that on a rectangular 
mesh, piecewise bilinear approximations would be more 
natural than piecewise linear ones. But the cost per mesh 
cell is lower for piecewise linear approximations; these 
approximations have been successfully utilized in neutron 
transport applications [S-lo], and we are not aware of any 
previously known convincing objection against the 
piecewise linear scheme. However, our results will show that 
the scheme does indeed have a serious defect. 

Recently, asymptotic diffusion limits have also been 
derived for one-dimensional spatial discretizations of trans- 
port problems [S, 61. In Section 4, we present such an 
analysis for the two-dimensional linear discontinuous 
Galerkin method. Our main result is that the diffusion limit 
of the discrete scheme is in general inconsistent with that of 
the continuous problem. The discretization therefore will be 
inaccurate for large gT and small g‘A. This result does not 
contradict the favorable conclusions described in [S-lo] for 
the linear discontinuous method on a rectangular mesh 
applied to neutron transport problems. This is because in 
neutron transport applications, the spatial cells are typically 
not more than a few mean free paths thick. Our analysis is 
more relevant to applications in electron and photon trans- 
port problems. 

In Section 5, we show that a modification of the scheme, 
suggested by the asymptotic analysis, leads to correct 

asymptotic behavior for the spatially periodic problems 
considered here. However, even this modification does not 
appear to lead to the right behavior in the diffusion limit for 
certain problems with nonperiodic boundaries. 

Numerical results illustrating our theory are given in 
Section 6. We believe that much of the strategy of the 
calculations of Sections 4 and 5 can be applied to other 
discretizations of transport equations. We discuss possible 
extensions and applications of our work in Section 7. 

2. THE ASYMPTOTIC DIFFUSION 
LIMIT OF THE TWO-DIMENSIONAL 
DISCRETE ORDINATES EQUATIONS 

Let us consider the following scaling of Eq. (3): 

for E > 0. We are interested in the limit E + 0. The scaling of 
(T T expresses that we wish to consider small mean free paths. 
The motivation of the scaling of gA will become clear from 
the asymptotic analysis presented below: If gA < O(E), 
absorption has no effect at all asymptotically. If (TV > O(E), 
absorption dominates asymptotically. The source Q is 
scaled in such a way that the solution remains of size 0( 1) 
as E + 0. 

We now consider an asymptotic expansion 

$m=$jnO)+&$;)+&2$(n2)+ ... . 

We shall call quantities with a superscript (n) nth-order 
quantities. Inserting the asymptotic expansion into Eq. (12) 
and equating the coefficients of&-l, we find 

N 

l+q’(x) = 1 wpp(x) =: Y(O)(x) 
k=l 

(13) 

for all m. We call Eq. (13) the zeroth-order equation. 
Equating the coefficients of E’, we obtain the first-order 
equation: 

n,.v*g’+a,*:‘=~* 2 WkIg’. (14) 
k=l 

Also, equating the coefficients of E’, we obtain the second- 
order equation: 

(15) 
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Let us define 

Then Eq. (14) can be written as 

We arrange Eq. (15) as 

Multiplying by w,, summing over m, and using Eq. (5), we 
obtain 

N 

1 w,$iz,. VI,+:’ + GA !@O’ = Q. (17) 
k=l 

Inserting Eq. (16) into Eq. (17), and using Eq. (6), we 
obtain 

$1 OT 

wk~k~V’~k~V~coi+~,~~o~=Q. (18) 

Finally, using Eqs. (7) and (8), we obtain the diffusion 
equation 

-v. & V Y’o’(x) + Do Y(‘)(x) = Q(x). (19) 
T 

Equation (21) is a weak formulation of Eq. (20), and one 
can attempt to obtain a discretization scheme from it by 
restricting $ and 4 to a space of piecewise polynomials. For 
instance, one might seek an approximation +” for $ that is 
periodic, piecewise linear, i.e., linear on each K, but possibly 
discontinuous, and such that Eq. (21) holds for every linear 
4 =4h on K. Clearly such an approach does not imme- 
diately lead to a reasonable scheme, because the values of +” 
on different cells K are unrelated to each other. However, 
consider the following reformulation of Eq. (21) obtained 
by integration by parts: 

+ cOTtx) $(x) - Q(x)1 d(X)> dx 

The calculations of Sections 4 and 5 will be discrete 
variants of the one described above. To clarify the strategy, 
we summarize the essential steps. 

The zeroth-order equations express that zeroth-order 
quantities are isotropic, i.e., independent of m. The lirst- 
order equations express anisotropic first-order quantities in 
terms of zeroth-order quantities and isotropic first-order 
quantities. The second-order equations involve second- 
order quantities, but these quantities do not appear in the 
solvability conditions obtained by averaging over the 
angular variable. Anisotropic first-order quantities are 
eliminated from these solvability conditions using the first- 
order equations. The remaining isotropic first-order quan- 
tities drop out because of the mild accuracy assumptions on 
the angular quadrature scheme listed in Section 1. The 
solvability conditions for the second-order equations then 
result in a diffusion equation for the zeroth order quantities. , , , I \“I u 

+j ~(X)~(X)(n.n,(X))ds(X)=O. (22) 
aK 

Here nK(x) denotes the exterior unit normal vector on 8K. 
Let us again consider replacing II/ by a piecewise linear, 
possibly discontinuous $“. We make the preliminary con- 
vention that for x E aK, $“(x) denotes the interior value of 
~5 in x. i.e.. the limit of@(v) as v tends to x from inside K. 
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3. THE LINEAR DISCONTINUOUS 
GALERKIN FINITE ELEMENT METHOD 

In this section, we present a derivation of the linear 
discontinuous Galerkin finite element method for Eqs. (3) 
and (4). Consider first a single advection equation of the 
form 

(52 .v) ‘h(X) + gT(X) ‘h(X) = Q(x), (20) 

where n is a non-zero vector in the plane. As before, Q is 
assumed to be periodic with period 1 in both coordinate 
directions, and we seek a periodic solution +. We first 
present the linear discontinuous Galerkin finite element 
method for Eq. (20). The generalization to Eqs. (3) and (4) 
will then be straightforward. 

Consider a partition of (0, 1)2 into finitely many 
polygonal cells. Via periodic extension, we think of it as a 
partition of &I2 into polygonal cells. Let K be one of the cells. 
Let $ be a solution of Eq. (20), and let 4 be an arbitrary 
smooth function on K. Then we have 

s Ctn .‘) It/lx) + aT(x) Ic/tx) 
K 

- Q(x)] 4(x) dx = 0. (21) 
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The scheme that we have previously rejected because it fails We introduce the notation: 
to couple different cells to each other can then be stated as 

hi:=xi+1/2-Xi-lI/27 

s { - (0. VI tih(x) 4+“(x) K 
+ COAX) @“(x) - Q(x)1 d”(x)> dx 

kj:=Yj+1/2-Yj-l/29 

xi := $(XiL l/2 + xi+ l/2), 

Yj := f(Yj- l/2 + Yj+ l/2). + s SK $“(x) Q”(x)(Q. nK(x)) ds (xl = 0 (23) We drop the superscript h, and denote by II/,,, the 
approximation to the solution of Eqs. (3) and (4). In the 

for all linear functions dh on K. The discontinuous Galerkin (Z, j )th cell, i.e., in 
finite element method [ 121 is obtained when the convention 
is changed such that @(x), XE~K, denotes the upstream txi-1/2, xt+ 112) ’ (Yj- l/23 Yj+ l/Z), 

value rather than the interior value. To state this more 
explicitly, let us define $, is linear and therefore of the form 

a-K:= {xEaK:fi.n,(x)<O}. (24) ~m(x~Y)=irn.i,,+~(X-Xi)5m,i.i 
I 

Then the new convention is that tih(x) denotes the exterior 
value on a-K, and the interior value on aK - 8 -K. For +tCY-Yj)Xm,i,j. (26) 

x E a K, we define $“‘(x) to be the downstream, i.e., the 
J 

interior value of II/” in x, and $“-(x) to be the upstream, i.e., 
the exterior value. Then the scheme can be stated as 

Subscripts of the dependent variables are always under- 
stood to be evaluated modulo Z or modulo .z, i.e., 
~,,i+l,j=*m,i,j+J=~m,i,j, etc. The downstream edge 

s [(a .V) IC/%4 + gi-(x) G”(x) - Q(x)1 
values of $, are of the form 

K 
e 

x d”(x) dx - j Ctih+(4-~h-w 
P-K 

x Q”(x)(n .nK(x)) ds (x) = 0. (25) and 

~~,i,j~L:2+~(x-Xi)rm,i,jf1:2 
I 

(27) 

Up to notation, this equation is identical with Eq. (3.11) of 
[ 121. It is required to hold for all linear 4” on K. 

*m,ik 112.1 +t(Y-Yj~Xm,i+l~Z,j~ (28) 
J 

This concludes our discussion of the method for the Comparing Eqs. (27) and (28) with Eq. (26), we find rela- 
advection problem (20). The scheme can be directly applied tions between the cell variables and the edge variables. To 
to Eqs. (3) and (4) by regarding the entire right-hand side of express these relations in a compact form, we introduce the 
Eq. (3) as a source term. notation 

We now consider the special case when the partition of 
(0, 1)2 into polygons is given by a rectangular mesh, and u m :=$ (29) 
take Ic/” to be piecewise linear, but possibly discontinuous, 
and the test functions 4” to be linear. To simplify the Then we have 
notation. we restrict ourselves to the case of constant cross 
sections 0 T and eA. The cell vertices are denoted by 

$m,i+liZ,j=+ (+m,i,j+tm,i,j) 

with 

txi+ l/23 Yjl l/Z), l<i<Z, l<j<.Z, 

(30) 

0 =x1/2 <x,/2 < ‘. < XI- I,2 < xI+ I,2 = 1 

and 

0 = Y l/2 < Y312 < . . . < YJ- l/2 < YJ, l/2 - - 1. 
+1-k 

2(~m,i,j+l-Xm,i,j+l), (31) 
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-l+cr, 
Xm,i+ 1/2,j 2 Xm,i,l+ 

l-a, 

2 Xm,i+ I,i, 

We also define the spatial moments of the source: 

Q,,, :=A, j”+“* j”“” Q(x,y)dydx, 
I .I x,+1/2 Y,- l/2 

Qx,i,, I=&,/:“‘~ S*“‘* (X-Xi) Q(x, y) dy dx, 
I J xl- v2 Y, - ii2 

Qy,i,j I= & Sxl”‘* la”‘* (Y- Yj) Q(x, Y) dy dx. 
’ I x,-1/2 Y,-l/2 

Note that if Q is linear on the (i,j) th cell, then 

Q(X,Y)=Qi,j+~(~-xj)Qri.j 
I 

Equation (25) with 4(x, y) = 1 now translates into 

2 (*m,i+ l/2, j- IC/m,i- l/2,;) 
I 

+ p (JIm,i,j+ 112 - Iltm,i,j- 112) + bTtl/m,i,j 
I 

=(dT-GA) 5 Wk#k,i,j+ei,j* 
k=l 

I Similarly, 4(x, y) = x - xi gives 

+ (J/m,i+1/2,j+\Ilm,i--1/2,,-2~m,ij) 
I 

+~(~m.i,j+~~2-Sm,i,j~l~2)+~T5nl,i.j 

I 

=(CT-~~A) g Wktk,i,j+Qx.i,j, 
k=l 

and 4(x, y) = y - yj gives 

~(~~,i,j+1/2+~m,i,j-l,2-2im,i,j) 

J 

+ h, (Xm,i+ liZ,j- Xm,i- l/&J ‘1 + gTXm,i, j 

= tdT-oA) f “‘kXk,i,j+ Qy.i.j. 

k=l 

(32) 

(33) 

(34) 

(35) 

(36) 

and 

(37) 

Equations (30)-(33) and (34)-(36) describe the linear 
discontinuous Galerkin method on rectangular meshes. 

We note that one could allow variable cross sections crT 
and (TV simply by replacing oT and cA in Eqs. (34)-(36) by 
gT,i,jandflA,i,j. For the resulting scheme, the analysis of this 
paper can be carried out without any essential changes. 

We shall also consider the following modification of 
Eqs. (35) and (36); compare, for example, [ 61: 

~(~m,i+ri2,j+~~,i-1,2,,i-Zi,i.j) 
I 

+~L,,,,+,,2- trn,i,j- 112) + cTSm,i,, 
.I 

=(dTwuA) f Wk<k,i,j+ Qx,i,, 
k=l 

~(*,,i,j+I,*+~~,*,,.-In-2*~,i,j) 
I 

+~(Xm,i+li2,j-Xm,i~I12.j)+(iTXr,,i.j 

= CUT’ uA) : WkXk,r,j+ Q,,,j. (38) 
k=l 

Here 0 and y are free parameters, and Eqs. (35) and (36) are 
obtained by setting t?= 3 and y = 1. We call the method 
defined by Eqs. (30)-(33), (34), (37), and (38) the modifi:ed 
linear discontinuous (MLD) method. Modifications of this 
kind have been used in practice [6]. The parameters 0 and 
y could, of course, also be chosen as functions of m, i,j, cT, 
and oA. 

In one space dimension, there is no parameter analogous 
to y, and one can show that the replacement of 8 = 3 by 
0 = 1 is equivalent to lumping the mass matrix if the canoni- 
cal basis of the space of piecewise linear, possibly discon- 
tinuous functions is used, (The “canonical” basis consists of 
the piecewise linear functions that are one at one of the 
endpoints of one of the mesh intervals, zero at the other 
endpoint of that interval, and on all other intervals.) We 
know no similar interpretation of the parameters 0 and y in 
two space dimensions. 

The parameters 0 and y have been introduced in such a 
way that linear solutions are preserved. More precisely, 
consider an infinite medium with constant cross sections 
and with a linearly varying source, 

Q(x, Y) = Q + xQx + YQ, > 

where Q, Q, and QY are constants. Then it is a matter of 
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simple algebra to show that Eq. (3) has exactly one solution We use Eqs. (30)-( 33) to eliminate the cell edge variables 
that is also linearly varying in x and y: *m,i+ l/Z,jT Iclm,i,j~ 112, tm,i,jk 1129 Xm,i+ 1/2,j’ Using the nota- 

It is easy to show that the modified linear discontinuous 
scheme preserves this exact solution for arbitrary choices of 
the parameters 0 and y. 

It is natural to require 8 + 3 and y + 1 as the mesh widths 
h, and k, tend to zero, with all other data fixed; then the 
MLD scheme reduces to the standard LD scheme for small 
mesh widths. However, for fixed nonzero mesh widths, one 
might attempt to improve the accuracy of the scheme by 
using 0 # 3 and y # 1. In Section 4, we shall show that the 
MLD scheme behaves incorrectly in the diffusion limit 
unless y + 0 as the scaling parameter E tends to zero on a 
fixed mesh. 

4. THE ASYMPTOTIC DIFFUSION 
LIMITFORO>OANDy>O 

We introduce the scaling of Section 2 into Eqs. (34) (37) 
and (38). Thus we consider the equations 

2 ($m*,i+ 1/2,j-$m,r- */2,J 
I 

+F (5m,i.j+1/2- 

=(y’ ) 
-&GA k$, WkEk,i,j+EQx,i,j~ 

=(:-MA) i, wkXk,i,j+&?y,i.j, 
t41) 

together with Eqs. (30)-(33). e 

tion defined in Eq. (29), we obtain 

+~(IL,~.i,l,j-5~.i+~,j-i~,i.j+~m.i.j)] 

9, 

xq 2 [ 

1+8 
--lf~~m,i,j+Xm,i,j~lCl~.i,j-l~Xm,i,j-l~ 

+1-P, 
~(@m,i,j+l-Xm.i,j+l 

-$m,i.j+Xm,i,r) +Tim.i.j 1 
+bA) F Wkl(/k,i,j +EQo, (42) 

~(~,.i,j+5,,i,j+~,,i-1,j+5,,i-I,j-2~,,i,j) 

+~,,i,j-5,,i,,-211/,,i.j) 1 

= (y-EoA) ~"k~k,i,j+EQx.i,j~ (43) 

01 m 1+/L 
kj [ 

~~~m.i.~+Xm.i.j+)Lm.i,j~~+~~,~,j-1~2~~,i,j~ 

+1-P, 
T(+m,i,j+l-Xm,i,j+l 

L 

+*m,i,j-Xm,i, jp2+n7,i,jI 1 
(Xm,i,j-Xm,i-1.j) 

+~(X,,i+I.j-Xm,i,j)]+~Xm.i,j 

=(~-E~A)T:WkXk,i,lfEQ~,i,j. (4) 
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We now expand the dependent variables into asymptotic 
series as in Section 2: 

Inserting Eq. (45) into Eqs. (42)-(44) and equating the coef- 
ficients of E-‘, we find the system of zeroth order equations, 
which expresses that to leading order, all cell-average 
independent variables are isotropic, i.e., independent of m: 

lj/;,‘i,j= !q/!, p ,= zpj 
?%G, 4, ’ x $, j = x ;p,’ . 

Equating the coefficients of a’, we find the first-order 
equations: 

k 

(47) 

1 
(48) +aTXE,)i.j=aTC wkxz/,j. 

k 

We introduce the notation 
N 

P := 1 wk bk t. 
k=l 

Equations (10) and (11) then imply 

P= 2 Wkbk/= f wk hk 1. 
k=l k=l 

Multiplying each of Eqs. (46)-(48) by w,, summing over m, 
and dividing by p, we find 

; [-YyIo,),,,+2Y!p:- Yui”,,j+~~I”,‘l,j-~I”_‘,,j] 
I 

1 

Equations (49 )-( 51) impose conditions on the zeroth order 
quantities Y”, Z”, and X0. We shall now argue that these 
conditions are so restrictive that Y” cannot, in general, 
satisfy a consistent and stable discretization of the diffusion 
equation (19). Assume that hi = h and k,= k for all i,j. 
We can then study Eqs. (49k(51) using discrete Fourier 
expansions. Inserting a Fourier mode of the form YYO? 

‘7’ 
!P ( io r(O) =  ̂

-i,j 3 

XCO! 8 
.exp J-l iXi,j+FY,J 

[ ( >I 
19’ 

into Eqs. (49)~(5 1 ), we obtain a system of the form 

!P 0 
A(I1,w) 0 2 = 0 0 ) 

B 0 
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where A(,?, o) is a complex 3 x 3 matrix, the characteristic 
matrix of the system. A computation shows that ~(~,,i+li2,j+~m,i-I!*,j-2~,,i,j)+~il~,i,j 

I 

(1 - cos 1) sin’ 0 
hk= 

+$I- cos A)’ (1 - cos w) 
h=k 

+fP- cos 0) sin* il 
kh= 

+y(l- coso)=(1-cos~) 
k*h I. 

2($ 
m.l,J+1/2+b~,i.j-~/2-21ir~,i.i)+~~~,i,j 

.I 

=(y-&aA) j, WkXk,i,j+EQy,i,j. (55) 

(52) The system is completed by Eqs. (30) and (3 1). 
In Section 4, the first step was to eliminate the cell edge 

unknowns. This led to a relatively simple calculation 

Clearly, this expression is nonnegative. We always choose 
8>0. If also y>O, then detA(L,o)=OoL=O or w=O. 
We thus conclude that unless y = 0, Eqs. (46)-(48) imply 
restrictions on the Fourier modes that can appear in the 
solution, only permitting modes with either no variation or 
the fastest oscillation possible on the given mesh in at least 
one of the two coordinate directions. Thus the scheme can- 
not have a correct diffusion limit in general, unless y = 0. In 
particular, the unmodified scheme (0 = 3, y = 1) does not 
have an asymptotic diffusion limit consistent with the 
continuous one. 

showing that there is no correct asymptotic diffusion limit 
for the scheme with y > 0. Consideration of the zeroth and 
first-order equations was sufficient for this argument. 

In the present context, we have found it more convenient 
not to eliminate the cell edge unknowns. As previously, we 
consider asymptotic expansions of the form 

*??I= c *!?w, (56) 
VT0 

5, = c 5!$“, (57) 
V>O 

5. THE ASYMPTOTIC DIFFUSION 
LIMITFORO>OANDy=O 

In this section, we consider the case 8 > 0 and y = 0. It is 
clear that y = 0 is not always a good choice. Consider, for 
example, Eqs. (40) and (41) for voids (cT=eA =0) and 
assume that Q, ~0 and QY = 0. Setting y = 0, one then 
obtains the diamond differencing scheme, which can lead to 
large unphysical oscillations. In practice, one would thus 
not use y = 0 for all problems. However, one might use a 
formula for y depending on E with the property that y + 0 
as E -+ 0, on a fixed mesh. If this convergence is sufficiently 
fast (y = O(s2) is enough), the analysis given in the present 
section still applies. 

We recall our convention that subscripts of dependent 
variables are evaluated modulo I or modulo J, i.e., 
~,,i+I,j=IClm,i,j+J=~m,i,j, etc. We consider the following 
equations: 

xrn= 1 X$)&Y. (58) 
“>O 

Inserting these expansions into Eqs. (53)-(55), we see as 
before that, to leading order, all cell center unknowns are 
isotropic, i.e., independent of m: 

x$‘i,j= A-y). (59) 

At this point, we do not obtain isotropy for the cell edge 
unknowns. However, we shall see later tit,\, 1,2,j and 
*!Z!, j+ l/2 are isotropic as well. 

We proceed to the first-order equations: 

CJT 

ff (~m,i+1/2,j-~,,i--,Z,j) -~(~~,).J+,/2-~~,‘,j~,,2), 

I J 
(60) 

aT (ti,‘,j- 5 wksF!,j) 

k=l 



(63) 

(64) 
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OT (ef$\,j- c wkcr!,j) 
k=l 

= -~(ii.l,!‘+1,2,j+~~~~,2,j 
I 

- 2+;,‘,j) -a&‘) + Q, i j, , , (72) 

It wkx!cf!,J 
k=l > 

Following the strategy outlined at the end of Section 2, 
we use Eqs. (60)-(62) to express anisotropic first-order 
quantities in terms of zeroth-order quantities and isotropic 
first-order quantities. Thus we define 

Multiplying these equations by w, and summing over m, we 

(65) 
obtain solvability conditions. To express these conditions in 
a brief form, we define 

(66) 
N 

J(l) := 
P’.bJ 1 wk~k$~!,j~ (74) 

k=l 

(67) 
k=l 

(75) 

Then Eqs. (60~(62) yield J!” := 
I* 1/2,j l? wkpk*g!+ Il2.j’ (76) 

k=l 

J!‘! 
l,Jf l/2 I= ii wk?ktiE!,jk 112’ (77) 

k=l 

(68) These variables are called currents. They give the net rate at 
which particles cross cells and cell boundaries in the 
horizontal and vertical directions. With this notation, the 
solvability conditions become 

(69) 

(70) 

k.(J?’ 
J r+ ll2.j - Ji?,,,,j) + hi(Jj,;‘+ l/2 - Ji,:‘L 112) 

= hikj(Qi, j - oA Yip)), (78) 

ekj(JI!+‘,p,j+ JI!!,,,,j) 
=2BkjJ~~,j+h,kj(Qx,i,J-a,Zj,oi)), (79) 

The second-order equations arising from Eqs. (53)-(55) 
are 

&.(J!‘! 1 r,,+1,2+J?j-1,2) 

=28h,Jb’tj+hikj(Q,,i,j-a,XI,~). (80) 
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Equations (78)-(80) can be simplified if we observe that the 
cell edge currents, i.e., the variables Ji:‘1,2,, and Ji.‘), 1,2r can 
be eliminated by the following procedure. First, we form the 
equation(78)i,,+(78),+,,i+(78)L,,+,+(78)i+,,i+~: 

kj(JI:‘,;,,j-JII_‘,,,j) 

+k,+l(J1:)3/2.j+l-JII)L;Z,i+l) 

+ h,(J!” r.j+3;2 
-J!” ) I., - u-2 

+'zj+,(JI:',.j+312-Jj:',,j-1/2) 

-t hik,(Qi,j-QA YUlpI) 

+hi+lkj(Q,+~,/-(~~YVlO+)l.j) 

=hk,+,(Q,.j+ i --CA Yip:+ ,) 

+hr+lkj+l(Qi+,,,+1-~A’lo,‘,,,+,). (81) 

Similarly, we form -(79),,j+(79)i+1,j-(79)i,j+1+ 
(79L+ 1.i+ I > and divide by 0: 

k,(JI:)3,2.j-Jjl),,2,1) 

+k,+l(Jj:)3,2.,+I-Jll)l,2.j+,) 

= -2k,J;j,,- ~(Q~x,i,j-aAZ;;)) 

hi, Ik, 
+2k.J”! +- I P,lC I./ 

8 

x (Qx.;+ 1,j-~~~j’?,,/) 

hikj + 1 -2k. J”!. -- /+ 1 /41./f 1 % 

X (Qx.i,j+ 1 - QA~!,?+ I) 

+ 2k,+ I J”! 
hi+ ,kj+ I 

u.r+ 1.j+ I + 
% 

X (Qx,i+ l.j+ 1 -gasf?l,j+ 1). (82) 

We alSo form -(8O)~,~j-(8O)i+~,j+(8O)i,.j+~+(8O)~+~.j+~~ 
and divide by 0: 

MJ:;!+3/2- J&p ,,z) 
+hi+,(JI:),,j+3/2-JI:)L,j-1,2) 

= -Zh,J:I:,-~(Q~,;,,-~~xlP:) 

hikj+ 1 +2hiJ”! +- ‘1.‘,.,i 1 8 

x (Q.,,i,j+l-6,XIP:+I) 

-2hi+,J;;;+l,j-+ 
” 

+ 2h,+ ,J”! 
hi+lkj+l 

VI.!+ l.j+ 1 + 
% 

x (Qy,;+l,j+l-~AXlO+)l,j+1). 

If we now subtract Eqs. (82) and (83) from Eq. 
cell-edge currents are eliminated, and we obtain 

2k,+l(Jz!+ I,j+ l- JEj,j+ 1) 
+ 2kj(J$+ I,j- Jij,j) 

+2hi+,(Jb~l+,,,+,-J~lj+,,j) 
+2hi(Jh!),.j+ 1 - Jk’j,j) 

( 

zcoj + x(O) 
+h,k,o, Y$‘+-i,J I, 

e 9 

( 

7 (0) .-X(O) 
+hj+,k,a, Y$‘l,,-yi+l.J r+ I,j 

% > 

i 

C(O) 
+hiki+,a, Yf’j+,+yi*j+’ 

- x!O! ,.,+ 1 
% > 

(83) 

(81), the 

= (hkQ)i+ l/z,j+ l/23 

with 

(hkQ);+ 1/2,j+ 10 

j+Q~xi.J~QysiJ) 

- Qy,i+ 1-j Qi+l,j- Qx’i+l,J 8 

j+ 1 + Qx,i,j+ I- Qy,i,j+ 1 
% 

(84) 

+hi+Ikj+l Qi+l,j+,- ( 
Qx,i+ I,j+ 1 + Qy.i+ I,j+ 1 

8 
(85) 

Our next goal is to remove the first-order currents from 
Eq. (84), using Eq. (68). An undesirable feature of Eq. (68) 
is that it contains the anisotropic zeroth-order quantities 
*!Z,'i* 112.j and ll/!Z,‘i,j+ 112. Before using Eq. (68) in Eq. (84), 
we shall therfore examine Ic/z,ji, ,,2, j and $E,ji, jk 1,2 more 
closely and derive expressions for them showing that they 
are “almost isotropic.” It is clear that a result of this kind 
will follow from Eqs. (63) and (64). 

In this context. it is natural to introduce the notation 

636) 
k=l 

58 l/9%2-9 
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and with 

YP’ G,f l/2 (87) D I=$. (98) 
k=l T 

It will soon become apparent that it is also useful to Here we have used our assumptions on the quadrature 

introduce the zeroth-order currents scheme, Eqs. (5t( 11). An analogous argument, with the 
roles of the two coordinate directions reversed, gives 

and 

J”! = _ D (y’y 
‘73’3J kj r,,+ l/2 - c,“;p ,,2). (99) 

Inserting Eqs. (97) and (99) into Eq. (84), we are left with 

J?! 
1,/f 112 := Wkqk$?!,j+ l/2’ (89) 

an equation involving zeroth-order isotropic quantities 

k=l 
only. This equation contains cell variables and edge 
variables. We shall now eliminate the cell variables. 

With this notation, Eq. (63) yields, upon 
C,“= 1 wk(. ) and C,“= I wkpC,( .), the equations 

operating by Equations (90) and (91) can be solved for Y !O? + E I”) and 
Y’!O’ _ F(O) 

I+l.j - i+ 1, j, and therefore for Y I,(),) and ZT,$, ’ 

J!O’ ._ 
ril/2,j'- wkpkti:i)+ 1j23.j (88) 

k=l 

and 

J!” .=; [(Y~pi’+~~p,‘)-(Y~“,‘,,j-~_l”,‘l,j)]. (91) I+ l/2,1 

and 

+; (J:o,‘,,2,j- J!” *-1:2,j)] (100) 

Here we have defined, as in Section 4, 

P:= 5 wkipki= 5 wk hk 1. 

k=l k=l 

AEON=! 
-i-i 2 ( yvio,)l/2,j- yi”,l,2,j) 

(92) 
+ L (J!” P l+1/2,j+ Ji”)1/2,J )I- (101) 

Similarly, Eq. (64) yields A similar calculation, with the roles of the coordinates 

y ?! ‘[(Y~p:+x~pi’)+(Y~,“)+,-x~,9’+,)] (93) 
reversed, gives 

r,J f 112 = 2 

and 
YyjL; (y(o) 

[ 
i,j+ l/2 + yul,Ojp I/2) 

J!O! 
I,/+ 112 +; CJip,‘+ 1,2 - Ji:‘- 1,2 

)I 

(102) 

Inserting Eqs. (90)-(94) back into Eqs. (63) and (64), we 
and 

find 

and 

+!Z,‘,+ i/z,j= YI:‘i/2,j+F JI”,‘I/2,j 

( Y ;p,+ ,,2 - Y I;,‘_ i/J 

(95) 

+ f (Jf+ 1,2 + J$- ,,2) . 1 (103) 

(96) 
We note that Eqs. (100) and (102) imply the consistency 
condition 

Thus, the $$j’\, i/2, j and $E$ j+ i/2 depend only on the signs (Y!O) 
, . 

of P,,, and c,, , not their values. 
r+l/z,j+ ‘yio’,,2.j)+~(JIU:1,2,j-J10)1/2,J) 

We insert Eqs. (95) and (96) into Eq. (68), multiply by = (Yulpl, i/2 + Y!p,‘_ ,,2) 
W,PL,, and sum over m. The result is 

+ j CJ!p,+ ,,2 - J$- 1,2). (104) 

Jlfj,j= -E (Yi”,‘,/,,j- Y{?l1/2,j), (97) 
I We shall make use of this equation later. 
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If we insert Eqs. (97) and (99) into Eq. (84), and then that J$)1,2,j and J$))+1,2 
equation: 

are zero. We obtain the following 
insert Eqs. (lOOk( 103) into the result, we obtain an equa- 
tion involving Y I”,’ 1,2, j, Y i,yJk r,*, Jiy 1,2, j, and Jip,‘* 1,2. (We 
note that there is a slight ambiguity: Should one use 
Eq. (100) or Eq. (102)? However, the final result will be -~(~i+3,2.j+l-yi+*,2,j+l) 

1+1 
independent of this choice.) 

L 

Next we shall show that the currents Ji”+’ 1,2 j and J I?+ 1,2 
are zero. This follows from the solvability conditions for the 
first-order equations (68))(70). Those equations are 

+~(yl~+l/2,j+l - Y. 
I 

*pl/2.j+l)) 

+kj - 
( 

F ('i+3/2,j- yi+l/2,j) 
1+1 

+i Cyi+1/2,j- yi-1/2.j I )>I 
J!O’ .- JP 

1+1/2,J 

hi 
I- 1'2, + 

J!O’ r+1,2,j+J!~1,2,~=0, (106) 

J?! 
,,J+1/2+ JI:p,)-l/2=0. (107) 

Equation (106) implies 

J!” 
I + 

.=(-l)iaj 
112.1 (108) 

for constants uJ independent of i. Similarly, Eq. (107) 
implies 

J”! 
l.J+ 112 

=(-l)‘bi (109) 

for constants b, independent of j. Inserting these two 
equations into Eq. (105), we conclude that 

and 

C-1) i+j+l 

J!O! 
‘,I + 112 = 

A’o’ 
hi ’ 

(110) 

(111) 

with a constant A (‘) independent of i and j. To determine 
A(‘), we insert Eqs. (110) and (111) into (104): 

Y’!O’ r+1/2,j+ yyio)l~2,j-yIpi)+l/2- y!,0j-l/2 

(112) 

Multiplying this equation by ( - l)i+i, summing over i and 
j with 1~ i< 21, 1 <j< 25, and using the periodicity, we 
obtain Ato) = 0. 

We shall now state the results derived so far in an explicit 
form. We insert Eqs. (97) and (99) into Eq. (84). Then we 
insert Eqs. (loo), (lOl), and (103) into the result and use , 

+2 hi+, [ ( -F Cyi+l,j+3/2- yi+l,j+1/2) 
J+l 

+[tyt+l,j+l/2- y' 
J 

L+l.j-l/2)) 

~(yi,j+3/2-yi,j+l/2) 
J+l 

+~(yi,j+l/2p yi,j-l/2 
J 01 

+ h,k,a, ~(Piti:2.j+ yi-l/2,j) 

+$j(ly,+l/*,j- lyi-1/2,j+ yi,j+1/2- yt,j-1,2) 1 
+hi+ lkja, [ iCyi+3/2,j+ yi+l/2,j) 

- I& tyi+3/2,j- yi+l/2,j 

-yi+I,j+1/2+ yi+l,j-1/2 )I 
+hiki+ 1aA [ t(Pf+i/2.j+1+ yi-li2,j+l) 

+~(yi+l/2,j+l-'yi-I/2,j+l 

+ yi+l,j+3/2- Iyt+l,j+1/2) 1 
(113) 
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In addition to Eq. (113) we have the consistency condition 
(104), which can now be written as 

yi+1/2,j+ y~-1/2,~= yi,j+1/2+ yi,j-l/2. (114) 

The general solution of Eq. (114) is 

yi+1/2,.j=~(yyi+l/2,~~1/2+ yi+1/2,j+1/2) t1151 

and FIG. 1. E = lo-*, LD (left) and MLD (0 = 1, y = 0) (right), 

yi,j+ l/2 = icy;- 1/2,j+ 112 + ‘yi+ l/2,1+ l/2). (116) 
We have concluded that the MLD scheme satisfies the 

minimal requirement that the limits E + 0 and h -+ 0 com- 

Here y~i + 1/2,j + 112 is an arbitrary function defined at the cell 
mute. We emphasize, however, that even Eq. (117) is not 

vertices. Inserting Eqs. (115) and (116) into Eq. (113), we 
completely satisfactory: It is an inaccurate discretization of 

obtain a discrete diffusion equation for the variables 
Eq. (19) if cA a,h2 $1. The term that causes the problem is 

QL/2,Jf1/2> which is a consistent discretization of the con- 
tinuous diffusion limit for all 8 > 0. Because of Eq. (114) we 

1 -2/d 2 1 - 210 

would have obtained the same result if we had used 2 4+8/O 2 

Eq. (102) instead of Eq. (100). l-216 2 1 - 2/e 1 

Y. (120) 

For illustration, we describe this discretization for the 
case when hi = k,j = h for all i and j. We then obtain We note that the unusual discretization of the Laplace 

operator in Eq. (117) does not cause any accuracy 

D 
-1 0 -1 -[ 1 2h2 

04 OY 
-1 0 -1 

problems. The discretization is accurate if oA a,h2 is small. 

6. A NUMERICAL EXPERIMENT 

In this section, we present a numerical experiment 
confirming our results. Since we had computer codes for 
problems on bounded domains with vacuum boundary 
conditions available to us, we have carried out the calcula- 
tions for such problems rather than periodic problems. Thus 
we consider 

(117) 

Here 

62. V) Icl(x, Q) + i Ii/(x, fi) 

= F js2 ij(x, W) di2’ + E, (121) [ -1 -1 
04 OY 

0 0 -1 -1 1 XE(O, 1)2,Q~D, 

II/(x, Q) Ic4*i+ 1/2,j+1/2 

-(*i-1/2,j~I/Z+*i-1/2.j+3/2 

=o if xfa(O, 1)2 

and n(x) . R < 0. 

+ *i+ 312, jp l/2 + $i+3/2,j+3/2)* 

1 1 [ 1 1 1 Q 

:=Qi,j+Qj+,,j+Qi,j+l+Q,+,,j+l, (119) 

etc. Eouation (117) is a second-order consistent discretiza- 
tion of the continuous diffusion equation (19). FIG. 2. E= lo-“, LD (left) and MLD (0 = 1, y=O) (right). 
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FIG. 3. E = 10m5, LD (left) and MLD (0 = I, y = 0) (right). 

Here n(x) denotes the exterior unit normal vector on 
i3(0, 1)2. We use the mesh 

i 
xi+ l/2 = -> 20 

.i 
(123) 

Yjt 1/2=$j, O<i,j620, 

and the S, quadrature scheme [a]. Figures l-3 show results 
obtained using the LD scheme and using the MLD scheme 
with 0 = 1 and y = 0, for three different values of E. The plots 
indicate that the solutions obtained with the LD scheme 
tend to zero as E -+ 0, whereas the solutions obtained with 
the MLD scheme have a nonzero limit. Figure 4 shows the 
exact solution of the continuous diffusion problem 

- pPO)(x) + Yy’O’(x) = 1, XE(O, 11*, (124) 

Y(O)(x) = 0, XEd(O,1)2, (125) 

confirming that the diffusion limit of the MLD scheme is 
close to the solution of Eqs. (124) and (125). 

7. DISCUSSION AND OPEN QUESTIONS 

We believe that asymptotic studies of the kind presented 
in this paper are potentially useful for two reasons. First, a 
scheme that does not have the correct diffusion limit is likely 
to be inaccurate for many applications, in particular for 
electron and photon transport problems. 

Second, an important problem is the efficient numerical 
solution of the very large systems of linear equations arising 

FIG. 4. Solution of diffusion problem. 

from discretizing two- or three-dimensional transport equa- 
tions using discontinuous finite element methods (such as 
the one discussed in this paper), particularly for the case of 
large total collision cross sections and small absorption 
cross sections. It should be noted that the numerical linear 
algebra problem is more severe here than in the context of, 
for instance, standard two- or three-dimensional elliptic 
boundary value problems. The reason is that the number of 
independent variables is four in two space dimensions and 
five in three space dimensions. Our original motivation for 
the work described here was the hope that the asymptotic 
diffusion limit of the discrete scheme could be used, in a 
multi-level algorithm, to accelerate the source iteration 
method for the discretized transport problem, without 
obtaining a deterioration in convergence speed as the total 
collision cross section becomes large and the absorption 
cross section becomes small. We note that multi-level, or 
rather two-level methods using diffusion approximations to 
accelerate the source iteration method are well known. They 
are called diffusion synthetic acceleration (DSA) methods; 
see, for example, [13, 141 for an introduction to such 
methods. Subsequent to the completion of the work 
described in the present paper, Wareing, Larsen, and Adams 
Cl.51 have shown that a modified bilinear discontinuous 
finite element discretization on rectangular meshes possesses 
a discrete diffusion limit consistent with the continuous one, 
and have developed a DSA method based on this result. We 
have only considered periodic problems in our analysis. 
A similar analysis is possible for certain problems with 
boundaries. For example, in the case of vacuum boundary 
conditions, all solutions of the unmodified LD scheme tend 
to zero as E -+ 0. This was demonstrated numerically in 
Section 6 and can also be seen by applying the analysis of 
Section 4. However, the behavior of the modified scheme in 
the presence of nonperiodic boundaries needs further 
clarification. If, for instance, nonzero values are prescribed 
for the incoming fluxes on the boundary, the constant A”) 
of Section 5 may be nonzero. Preliminary numerical results 
suggest that the scheme can produce unphysical oscillations 
in such cases. We also intend to perform similar studies for 
the linear discontinuous method on triangles and the 
bilinear discontinuous method on rectangles. We conjecture 
that both schemes have the correct behavior in the diffusion 
limit, without any modification. Nevertheless, modifications 
such as the ones discussed in this paper may be useful to 
improve the accuracy of the schemes for large CJ~ and 
small gA. 
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